

Materials Science

Chemistry Intro

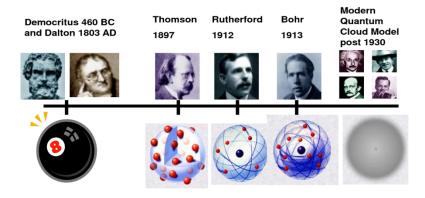
What is chemistry?

- Chemistry is the study of the composition and properties of ______.
- Matter has two general properties; it occupies ______ and has

Why study chemistry?

- Chemistry can help to explain how things work.
- Chemistry may help you in your future career. Even if you are not planning on being a chemist, many jobs require a basic understanding of chemistry.
- Chemistry can help you to be an informed citizen. Knowledge of chemistry can help you to evaluate data, arrive at an informed opinion and take appropriate action.

Boat Challenge Assignment


The Scientific Method:

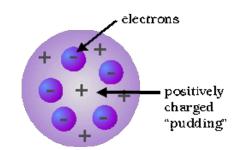
- Scientific method is the process that scientists follow in order to perform _______ to investigate the world around them.
- The scientific method:
 - Gather information through ______
 - Define the _____
 - → Create a _____
 - _____ an experiment to test the hypothesis
 - _____ and observe the experiment
 - o _____ data from experiment
 - Modify of create new _____

Boat Challenge Assignment

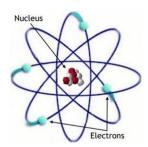
Model of the Atom

http://thehistoryoftheatom.weebly.com/

Lived from: 460-370 BC Put forward atomic model in: 442 BC Description of his model:


Democritus (400 B.C.)

Lived from: 1766-1844 Put forward atomic model in: 1803 Nickname for his model: ______Model Description of his model:



Dalton 1803-1805

J.J. ______ Lived from: December 18, 1856 - August 30, 1940. Put forward atomic model in: 1904 Nickname for his model: ______ Model (or Raisin Bread Model) Description of his model:

LORD ERNEST ______ Lived from: 1871-1937 Put forward atomic model in: 1911 Nickname for his model: ______ Model Description of his model:

Electrons

Shell

Positive

Charged Nucleus

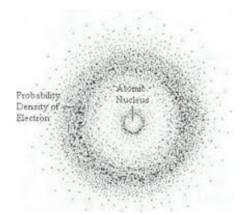
Energy

Levels

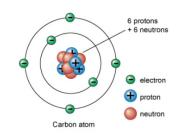
absorb energy

excited state

ground state


NIELS ______ Lived from: 1885 to 1962 Put forward atomic model in: 1913 Nickname for his model: ______Model Description of his model:

release energy


MODERN THEORY: QUANTUM MECHANICAL MODEL Description of this model:

Erwin _____ Date: 1926 Quick summary

JAMES _____ Date: 1932 Quick Summary:

(+)

See History of the atom & periodic table assignment (Q1 & 2)

About the Periodic Table

What is the periodic table?

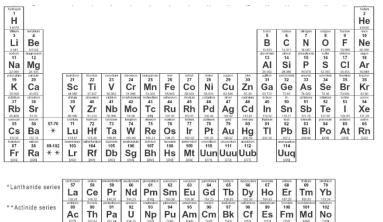
A way to organize ______

Contains all elements ever discovered or ______

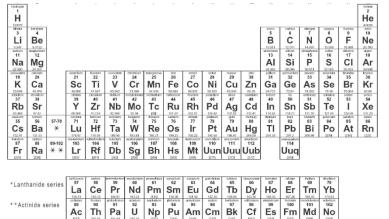
Development of the Periodic Table:

- The periodic table was developed by _____ (Russian Chemist). He recognized trends in properties of elements when organized by
- He used these ______ to organize the periodic table.
- He was then able to use the periodic table to ______ the properties of elements that had not yet been discovered or created.

How is the periodic table organized?


- The periodic table is organized by increasing ______ number.
- It is organized into families and periods. ______ are the horizontal rows of the periodic table, and ______ (or groups) are the vertical rows of the periodic table. Most elements in a family have similar _____.

Label the periodic table


Periods and Groups & diatomic elements (elements found in pairs in nature):

hydrogen				171	1	÷	151		15	10		17	0.01	110				helium
1																		2
H																		He
1.0079 lithium	beryflium	1											boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	Be												₿	ĉ	N N	ů	9 F	Ne
6.941	9.0122												D 10.811	12.011	14.007	15.999	18,998	20,180
sodium 11	magnesium 12	1											aluminium 13	sticon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20		scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	2inc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 nicibium	51.996 motybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63,546 silver	65.39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78.96 telurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468 caesium	87.62 barium		88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thailium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radion
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununquadium	208.98	209	210	[222]
87	88	89-102 ★ ★	103	104 Df	105 Db	106	107 Db	108	109	110	111	112		114				
Fr	Ra	**	Lr [262]	Rf	Db	Sg	Bh	Hs	Mt	JZTI	Uuu 12721	Uub		Uuq				
22.0	220		[202]	201	[202]	[200]	204	200	[200]	21	212	[20]		200	1			
			lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	ľ	
*Lant	hanide	series	57	58	Pr	60	61 Dum	62	63	64	65 Th	66 Dv	67	68	69 T	70 Vh		
			La 138.91	Ce	140,91	Nd	Pm	Sm	Eu	Gd	Tb	Dy 162.50	Ho 164,93	Er	168.93	Yb		
**^^*	tinide s	orios	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	amaricium 95	ourium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102		
ACI	unide s	enes	Ac	Th	Pa	Ű	Np	Pu	-	Cm	Bk	Ĉf	Ës	Fm	Md	No		
			227]	232.04	231.04	238.03	[237]	[244]	Am [243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

Metals, Non Metals Metalloids:

Solids Liquids and Gases (@ room temp):

90 pretudment 91 Th Pa

Valence Electrons

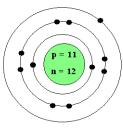
* * Actinide series

What are they?

138.91 actinium 89

*Actinide series

- Valence electrons are those that are in the ______ electron shell (valence shell) of an atom. The valence shells are the outermost s and p orbitals. The outermost s and p orbitals are the highest ______ orbitals of an atom.
- Valence electrons determine how an element with other elements.
 - The ______ valence electrons an atom has, the less stable it is and the more likely it is to react.
 - The ______ valence electrons an atom has, the more stable it is and the less likely it is to react. Something that is unlikely to react is called


Octet Rule:

The most valence electrons an atom can have is 8, because that is a full valence (2 • electrons in the s orbital, 6 electrons in the p orbital). All atoms would like to have 8 valence electrons because then they are stable. This is called the

_____ rule (or the rule of 8).

- Exceptions:
 - Hydrogen and helium can only have 2 electrons in their valence shell (1s).
 - _____ metals (+ a few others) are also exceptions because orbitals can hybridize. We will not be learning about hybridized orbitals in this course.

NOTE: 8 valence electrons and 0 valence electrons both make for stable atoms because with 0 valence electrons, they essentially do have 8 because the next valence shell below the one that was emptied is full...

Easy Way to Determine Number of Valence Electrons:

Group 1 has _____ valence electron, group 2 has _____ valence electrons, groups 3 to 12 are transition metals so we don't need to determine the number of valence electrons they have, group 13 has _____ valence electrons, group 14 has _____ valence electrons, group 15 has _____ electrons, group 16 has _____ electrons, group 17 has _____ electrons, group 18 has _____ electrons.

Lewis dot diagrams

- Electron-dot formula method or ______ Formula method is used to represent the number of ______ in the valence shell.
 - 1. The core is represented by the ______ for the element; valence electrons are represented by _____.
 - 2. The symbol is assumed to have ______ sides and the valence electrons are distributed around the sides.
 - 3. When we distribute valence electrons, we first place ______ dot on each of the four sides before we locate ______ of electrons on any one side. Usually no more than ______ electrons can be placed on any one side.

Examples:

```
calcium
```

selenium

bromine

Finish Assign 1 & Valence Electrons, Ions & Lewis dot Assignment (columns 1 & 4)

Intramolecular Forces

- Intra" is latin for "_____".
- Intramolecular forces are forces within a molecule or compound holding it
- Atoms want to have a ______ valence shell, because then they will be stable. Atoms can fill or empty their valence shell by sharing, gaining or losing ______.
- There are three types of intramolecular forces we will discuss: metallic bonding, ______ bonding and covalent bonding.

1. Metallic Bonds

Formation of metallic bonds

- Metals are made up of ______ with loosely held valence electrons.
- The valence electrons of a pure metal can be modeled as a "_____" of electrons.
- The electrons are able to ______ freely from one part of the metal to another.
- Metallic bonds are the forces of attraction between free floating valence electrons and the positively charged metal ions.

Properties of Metals:

- The "sea of electrons" can help to explain the properties of metals.
- Good conductors of electricity
 - because charges (electrons) can ______in the metal.
- Metals are ductile (can be drawn into wires) and malleable (bendable/moldable)
 - because the metal cations are surrounded by electrons ("sea") so when force is applied, the electrons act as a ______ or insulator preventing the positively charged ions from getting too close. This means protons will not repel to cause breaking but rather move and glide ______ one another allowing the metal to ______.
- Metals form crystalline structures
 - because they are made of ______ which naturally like to have a close packed arrangement (similar to how fruit stacks at the grocery store).

Alloys

- Alloys are a mixture of two or more ______ where at least one of those elements is a ______.
- Alloys often have ______ properties than the metals that make them up
- Steels are important alloys with a wide range of useful properties such as

2. Ionic Bonding

- One way an atom will _______it's valence shell is through ionic bonding (creating ions)
- Ionic bonding occurs when a _____ bonds with a
- Ionic bonding occurs when there is a complete ______ of one or more electrons from one atom to another.
- You can predict the ______ of the ion created through ionic bonding based on the number of valence electrons it contains. (remember electrons are negatively charged)

Element	Number of Valence e-	e- gain/lose to fill octet	Charge with full valence
Oxygen			
Sodium			
Hydrogen			

Formation of lons:

- When an atom loses or gains electrons it forms an_____(this is ionic bonding).
- An ion is an atom or group of atoms with an overall
- Usually atoms on the left of the staircase (metals) ______ electrons, forming ______ with a ______ charge.
- Atoms on the right of the staircase (non-metals) tend to ______ charge.
- The cations and anions combine together in a ratio that ______ their charge
- Since cations and anions have opposite charges, they are ______ each other. This attraction, called electrostatic force, holds them together in an ionic bond.
- An atom and an ion are very different.
 - Example: **Table** Some differences in chemical and physical properties for sodium ion and sodium atom.

Property	Na atom	Na ⁺ ion	
charge			
pure form			
reaction with water			
conductivity			

Elements with multiple ionic charges:

- ______ elements are ones that can form more than one stable ion. Most
 ______ metals are multivalent.
- Multivalent elements are ones that occur on your common ion sheet
 _____ (ex. Copper, iron, tin)

Polyatomic ions:

• Polyatomic ions often have complicated sounding names which makes them seem dangerous or synthetic but many poyatomic ions occur naturally.

Lewis Dot diagrams for ions

- 1. Determine the number of ______ the ion has (look at how many the neutral atom would have and how many electrons were gained or lost based on the charge).
- 2. Draw your lewis dot structure
- 3. Place ______around the diagram with the charge outside the bracket in the top right corner.

Examples:

K + As³⁻

Valence Electron, Ions & Lewis dot Assignment (complete all columns)

Lewis dot for the Formation of Ionic Bonds:

- Example: Sodium Chloride
 - Sodium has 1 valence electron and would like to lose one, chloride has 7 valence electrons and would like to gain one, so an ionic bond will occur where one sodium atom will give it's valence electron to a chlorine, making the sodium have a +1 charge and chlorine/chloride have a -1 charge. Since the atoms are now a cation and an anion, they are attracted to one another.
 - Lewis drawing:
- Not all ionic compounds are created from cations and anions with a 1:1 ratio.
- Example: Aluminum Bromide
 - Lewis Drawing:

RECALL FROM PREVIOUS STUDIES

CHEMICAL FORMULA:

- To determine the chemical formula of a compound you look at charges and determine what the lowest number ratio the cation and anion could pair up in to cancel their charges.
- Remember subscripted numbers indicate the number of atoms/ions present.
- The cation should always be written first followed by the anion.
 - o Ex: Aluminum sulfide
- If a compound contains a polyatomic ion where more than one is present, parenthesis are used to indicate how many polyatomic ions there are.
 - Ex. Calcium phosphate
- If using criss cross method, remember to always reduce. Ionic compounds are written as formula units which is the whole number ratio of ions.
 - Ex. Barium sulfate

NAMING:

- To name a binary ionic compound simply write the name of the metal and then the name of the nonmetal with and "ide" ending (subscripted numbers do not need to be included in the name as long as there is only one possible charge).
 - o Ex. MgBr₂
- To name ions containing a polyatomic ion, simply write the name of the cation and then the name of the anion (do not need to change the endings).

https://www.youtube.com/watch?v=U7wavimfNFE

- \circ Ex. Na₃PO₄
- If you are naming a compound with a multivalent element, use roman numerals to indicate which ion is present.
 - o Ex. FePO₄

Structure of Ionic Compounds:

- Looking at the structure of ionic compounds can help us to understand their
- Ionic compounds form rigid arrangements of ions called a
- Different sized ions pack together to form different _____ crystals
- An ionic compound contains a huge number of positive and negative ions in a fixed ratio (______).

Properties:

- _____solids at room temperature
 - o because their bonds resist being stretched
 - _____ melting and boiling points
 - because they are held together by strong electrostatic forces (ionic bonds)
- Crystals made of ionic compounds can be easily ______
 - because when an outside force strikes a crystal it can offset the lattice making positively charged particles sit next to other positively charged particles. Since positives repel one another the crystal breaks.
- Conduct electricity when ______ (molten) but not as ______.
 - When molten the ions are able to move around and carry charges (conduct electricity).
- Conduct electricity when ______.
 - When dissolved in water, water pulls the ions out of the crystalline lattice. Since they are then able to move about freely, they can then carry a charge and conduct electricity.

3. Covalent Bonds

- Another way for atoms to fill their valence shell is through _______
- Covalent bonding occurs between a _____and a _____.
- Covalent bonding occurs when electrons are ______ between two atoms.
- Covalent bonds can occur as single, double or triple bonds
 - Single bonds occur when _____ pair of electrons is shared between two atoms (each atom donating 1 electron to share)
 - Double bonds occur when _____ pairs of electron are shared between two atoms (each atom donating two electrons to share)
 - Triple bonds occur when _____ pairs of electrons are shared between two atoms (each atom donating three electrons to share)
- You can predict the number of covalent bonds needed based on the number of valence electrons an atom contains. (remember electrons are negatively charged)

Element	Number of Valence e-	e- needed to fill octet	Possible bonds created
Oxygen			
Nitrogen			
Carbon			

Molecules and Molecular Compounds

- A molecule is a neutral group of atoms ______ together through covalent bonds.
- Noble gases have full valence shells naturally so they are the only
 ______ elements.
- There are 7 diatomic elements that occur in pairs in nature:
- Determining the chemical formula of a molecule is more difficult than with an ionic compound because there can be ______ compounds possible for the same two elements depending on the types of bonds that form.
- Unlike ionic compounds, covalent molecules molecular formula is not
 ______ to the lowest ratio. It represents the exact number of atoms
 that combine to form exactly one molecule.

Lewis Dot for the Formation or Molecular Compounds

- When given the chemical formula, you can use lewis dot structures to represent the bonding and show the structural formula for a molecule.
- Start by drawing out the lewis dot for each of the atoms involved. Then determine where the electrons will share in order for all atoms to bond together
- If you have a chemical formula where there is one atom of one element and several atoms of a different element, usually the element with one atom is in the middle surrounded by the others.
 - Ex: F₂

• Ex. HCN

• Ex. NH₃ Notice that an unshared pair can affect the shape of the molecule.

	RECALL FROM PREVIOUS STUDIES								
NAMING	NAMING MOLECULES:								
Whe	Binary compounds: These are compounds that contain only When naming binary compounds we use to indicate the amount of each element present.								
1	2	3	4	5	6	7	8	9	10
Mono*	di	tri	tetra	penta	hexa	hepta	octa	nona	deca
*Mono is	only used	for the se	econd ele	ement in c	a compo	und.			
Ex. CO	2			P ₄ O ₁₀			CF	4	
Use the p	CHEMICAL FORMULA: Use the prefix to determine the number of each element and then write it down: Dinitrogen trioxide								
Diphosphorus pentoxide									
Electro	negativity	/:							

- Electronegativity is the ability of an atom to ______ electrons to it when bonded

• We can compare electronegativity values between atoms to determine the type of that will form between them.

• An element with a

electronegativity value is really good at attracting electrons and an element with a low electronegativity is not.

In general, electronegativity
 ______as you
 move from left to right across
 the periodic table and
 ______as you
 move from top to bottom.

Electronegativity difference	Most probable bond type
0.0-0.4	Nonpolar covalent
0.4-1.0	Moderately polar covalent
1.0-1.7(ish)	Very polar covalent
>1.7	ionic

H Electronegativity values of the elements (Pauling scale) Li Be 1.0 1.5 Na Mg 0.9 1.2 K Ca Sc Ti V Cr Mn Fe Co Ni Ca Sc Ca Sc	F Ne 4.0 CI Ar 3.0 Br Kr
Li Be C N O 1.0 1.5	4.0 CI Ar 3.0
1.0 1.5 Na Mg 0.9 1.2 1.0 1.5	4.0 CI Ar 3.0
Na Mg 0.9 1.2	CI Ar 3.0
0.9 1.2 1.5 1.8 2.1 2.5	3.0
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se	Br Kr
0.8 1.0 1.3 1.5 1.6 1.6 1.5 1.8 1.8 1.8 1.9 1.6 1.6 1.8 2.0 2.4	2.8 3.0
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te	I Xe
0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.2 2.2 2.2 1.9 1.7 1.7 1.8 1.9 2.1	2.5 2.6
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po	At Rn
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.2 2.2 2.2 2.4 1.9 1.8 1.8 1.9 2.0	2.2 2.4
Fr Ra Ac	
0.7 0.7 1.1	
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	
1.3 1.5 1.7 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	

Non Polar Bonds

- If both atoms have an equal (or approximately equal) ______ on the electrons (same electronegativity), the bond is considered to be non-polar.
- Diatomic molecules are non-polar because they are made up of two atoms of element with the same electronegativity and therefore both atoms have equal pull on electrons.
- Ex. Cl₂

 Electronegativity difference:

Polar Bonds

- When two covalently bonded atoms have a significant electronegativity difference (between 0.4 and 1.7) the electrons are shared ______.
- The atom with the higher electronegativity attracts electrons
 ______ and therefore gains a slightly ______
 charge. The atom with the lower electronegativity gains a slightly
 charge.
- The slightly positive and slightly negative parts of the molecule are called poles. Because polar covalent molecules contain a positive pole and a negative pole, they are called ______.
- Ex. HCl Electronegativity difference
- Since many molecules have more than one bond we have to consider ______ in a molecule to determine polarity.
- The shape of a molecule determines the polarity of the molecule. If the molecule contains polar bonds and the shape is ______ the molecule will be non polar. If there is ______ the molecule could be polar.

See Polarity Assignment

VSEPR

What do the molecules really look like?

Next we will look at what a molecule looks like in 3 dimensional space. We use molecular ______ and VSEPR Theory. VSEPR stands for

______. The VSEPR theory determines the _______ of a molecule by looking at the electrons surrounding the central atom and whether they are shared pairs of lone pairs (bonding or non-bonding pairs).

Determine Molecular geometry using VSEPR:

- 1. Determine the lewis dot formula
- 2. Determine the total number of electron pairs around the central atom
- 3. Use the table provided to determine the electron pair geometry
- 4. Use the table provided to determine the shape
- 5. Use the diagram chart to draw a 3D diagram

	VSEPR Chart							
Total pairs of e [.] around central atom	Number of bonded pairs	Electron Pair geometry	Molecular geometry					
2	2	Linear	Linear					
3	2	Trigonal Planar	Bent					
3	3	Trigonal Planar	Trigonal Planar					
4	2	Tetrahedral	Bent					
4	3	Tetrahedral	Trigonal Pyramidal					
4	4	Tetrahedral	Tetrahedral					
5	2	Trigonal Bipyramidal	Linear					
5	3	Trigonal Bipyramidal	T-Shaped					
5	4	Trigonal Bipyramidal	Seesaw					
5	5	Trigonal Bipyramidal	Trigonal Bipyramidal					

6	2	Octahedral	Linear	
6	3	Octahedral	T-Shaped	
6	4	Octahedral	Square Planar	
6	5	Octahedral	ral Square Pyramidal	
6	6	Octahedral	Octahedral	

VSEPR Geometry 3D diagrams:

Going into the page

1

Coming out of the page

E = Central Atom

X =Bonded Atom

• • = Unbonded pair of electrons

In plane with the page

		VS	EPR Geometries		· · · · · · · · · · · · · · · · · · ·
Steric No.	Basic Geometry 0 Ione pair	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2	X - E - X Linear				
3	X E Trigonal Planar	E X < 120° Bent or Angular			
4	X Mun. E 109° X Tetrahedral	XIIIII.E X < 109° Trigonal Pyramid	X Sent or Angular		£,
5	X 120° X E X X X Trigonal Bipyramid	< 90° X X///// < 120° E X Sawhorse or Seesaw	$ \begin{array}{c} X \\ \bullet III_{III_{III_{III_{III_{III_{III_{III$	× 180° × X Linear	
6	$X_{M_{M_{n}}} \overset{X \text{ 90}^{\circ}}{\underset{E \text{ with } X}{ }} X$ $X \overset{E \text{ with } X}{\underset{X}{ }} X$ Octahedral	<90° X Square Pyramid	90°X/m, Eanth X X Eanth X Square Planar	X $H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H$	X 180° E X X Linear

Examples:

 OF_2

Oxygen has _____ pairs of electrons around it, _____ are bonded _____ are lone, so it has a geometry of _____.

The 3D drawing for tetrahedral bent is:

So you just need to fill in the atoms where they belong:

 PCI_3

 PCI_3 has _____ pairs of electrons around it, _____ of the pairs are bonded. This means that PCI_3 has a geometry of ______.

Sometimes in a double or triple bond you have to assume that the atom has only one shared pair of electrons in order to get the proper geometry.

 CS_2

Even though this actually has ______ shared pairs of electrons and all are bonding electrons, the shape is linear. In this molecule we pretend that Carbon has _____ pairs of electrons and both are bonded.

Molecules that Break the Octet Rule:

Normally assume that atoms want to have _____ valence electrons, however sometimes atoms like to have more. In situations like this we say that the atom _____ the octet rule. In this class you will always be told if an element breaks the octet rule.

XeF₄

Xe has	valence elec	ctron and Fluorine has,	
This molecule bonds so it's		pairs of electrons around it, and of them are invol	lved in
3D drawing:			

Balloon Molecules Assignment

Create the molecules assigned to your group using the balloons provided. There are different coloured balloons. Assign one colour to represent the bonded electron pairs and the other to represent the lone electron pairs. Make sure you specify which is which.

Create your molecules so that it is stable enough to get knocked over and still maintain its shape. You will be provided with tape and balloons. After you have created your molecule with the balloons, label it with masking tape and your names. You then need to make a 3 dimensional drawing of each of your molecules (not drawings of the balloons). Use the dashed and solid lines to represent the atoms that go into the page and the atoms that come out of the page. Each member of your group should submit a drawing of both molecules. On the paper you hand in, write down which balloon colors represent bonded electrons and which represent lone pairs. Don't forget your names!

When you have finished building and drawing your molecules, you need to find a space on the counter and place all of your molecule representations together. You can then work on the "VSEPR" assignment.

(See VSEPR assignment)

Intermolecular Forces

- Inter is latin for "_____"
- These are the forces that occur between _____ (rather than within).
- The two types of intermolecular forces we will look at are Van Der Waals and hydrogen bonds.

A. Van Der Waals

• The two weakest intermolecular forces are both classified as Van Der Waals forces

Dipole Interactions

- This is when one polar molecule is ______ to another polar molecule
- The slightly negative atom from one polar molecule is ________ to a slightly positive atom from another polar molecule.
- These dipole interactions are similar to ______ bonds, but much weaker

Dispersion Forces:

- These are the ______intermolecular force
- Dispersion forces occur between both polar and nonpolar molecules.
- When the moving electrons happen to be ______ on the side of the molecule closest to a neighboring molecule their electrical forces influence the neighboring molecules electrons to be momentarily more on the opposite side. This shift causes a ______ attraction between the two molecules.

• Dispersion forces generally get stronger as the number of electrons in the molecule increases.

B. Hydrogen Bonds

- Hydrogen bonds are weak bonds formed by the attractions of slightly negative atoms to the slightly positive ______ when bonded covalently.
- Hydrogen bonds occur between hydrogen, and ______,
- Hydrogen bonds are also called ______
- Because hydrogen has a low electronegativity, when it pairs up with one of the high electronegativity elements ______, a highly polar molecule is created.
- Hydrogen bonds are a very strong dipole force.

_____, _____.

- Hydrogen bonds are weaker than covalent bonds but ______ than van der waals.
- Hydrogen bonds help to explain the high melting and boiling point of water, the low density of ice, the unusually high surface tension of water and the unusually high heat capacity of water.

Properties of Covalent Compounds:

• Intermolecular interactions affect the physical properties of covalent compounds

Molecular Solids:

Most covalent compounds have _____ melting and boiling points compared to ionic compounds.

Network Solids:

- Some covalent compounds have ______ melting points or decompose without melting at all. These stable substances are network solids, where all of the atoms are covalently bonded to one another.
- Melting a network solid would require _____ covalent bonds thoughout the entire solid.

https://youtu.be/PVL24HAesnc

See Intermolecular Forces Assignment

Properties Summary:

Type of Solid	Interaction	Properties	Examples
Ionic	I	 Melting Point, , , Often, Ofter. 	NaCl, MgO
Metallic	Bonding	 Hardness and Melting Point (depending upon strength of metallic bonding), usually not 	Fe, Mg
Molecular	Bonding, Dispersion	 Melting Point, , , can be 	H ₂ , CO ₂
Network	Bonding	 Melting Point, , , tend not toin water. 	Some forms of C, SiO2

Bond types summary:

https://youtu.be/QXT4OVM4vXI?list=PL8dPuuaLjXtPHzzYuWy6fYEaX9mQQ8oGr

See Types of Solids Assignment

Boat Challenge

The Challenge:

As a group build the best boat. Your boat must be able to float in a sink of water as well as support the weight of at least one can of vegetable soup.

Your boat will be made out of aluminum foil. Be sure to think about your design before you build it. You will have one trial boat and then be given a chance to adjust your design and create a new boat.

Design: Draw a picture of your initial boat design and your redesigned boat design.

Analysis:

1. Why did you decide on the design you used?_____

2. Did your initial design work well? Explain why or why not.

3. How did you adjust your design to improve it? Why did you adjust it the way you did?

4. What designs worked best in the class? What elements of the design made them work well? Why?_____

6. What was your thinking process throughout this task? (how did you come up with your design? How did you decide what to do to improve it). _____

7. How was the process you went through with this task similar to the classic "scientific method"? ← wait to answer this until we have learned about the scientific method______

8. Do you think that the scientific method is the only process that should/can be used to do scientific research? Explain.

Name_____

History of the Atom & the Periodic Table

1. Explain why we study the historical development of the model of the atom (give at least 2 reasons)

2. Draw and label the current model of the atom:

- 3. Describe the arrangement of the periodic table with regards to the following:
 - a. Metals and non-metals
 - b. Solids, liquids and gases
 - c. Valence Electrons

4. In your own words, explain why an empty valence shell is equivalent to a full valence shell.

Name:_			

Valence Electron, Ions & Lewis dot Assignment

Complete the following table:

Name	# of valence electrons	# of electrons to gain or lose	Common charge	Lewis dot for neutral atom	Lewis dot for common ion
Aluminum					
Argon					
Beryllium					
Boron					
Carbon					
Chlorine					
Fluorine					
Helium					
Hydrogen					
Lithium					
Magnesium					
Neon					
Nitrogen					
Oxygen					
Phosphorus					
Silicon					
Sodium					
Sulfur					

Describe two ways an ion forms from an atom:

Name:_____

Ionic Compound Lewis Assign:

Use the Lewis formulas for atoms to determine which ions and ionic compounds will form when the following elements combine:

1. Lithium and Fluorine

2. Calcium and chlorine

3. Magnesium and oxygen

4. Aluminum and iodine

5. Calcium and phosphorus

- 6. Sodium and nitrogen
- 7. Why do nonmetal atoms tend to form anions when they react to form compounds?

Covalent and Ionic Bonding Assignment

Classify the following compounds as ionic (metal + non-metal), covalent (non-metal + nonmetal) or both (compound containing a polyatomic ion), then name the compound using IUPAC naming rules.

1.	CaCl ₂	
2.	CO ₂	
3.	H ₂ O	
4.	BaSO4	
5.	K ₂ O	
6.	NaF	
7.	Na ₂ CC	D ₃
8.	CH₄	
9.	SO3	
10	.LiBr	

Name:_____

Covalent Bonding Lewis Dot Assignment

Draw the lewis dot structure for the covalent molecules created from the elements below. Be sure to draw the lewis dot in 2 steps, to show how the electrons are involved in bonding.

H₂
 O₂
 N₂
 CO₂

 $5. \ H_2O$

6. HNO₃

7. Explain why neon is monatomic but chlorine is diatomic.

Polarity Assignment

- 1. How must electronegativities compare is a covalent bond between them is polar?
- 2. Using only their relative position on the periodic table, arrange the following elements in order of increasing electronegativity: K Cs Br Fe Ca F Cl
- 3. Predict what type of bond (non-polar covalent, polar covalent, or ionic) would form between the following:

a.	Ca-S	g.	N ₂
b.	H-F	h.	$\rm NH_3$
c.	P-H	i.	H ₂ O
d.	C-CI	j.	FeO
e.	C-O	k.	MgCl ₂

- f. Li-Cl
- 4. Determine whether the following molecules are polar or non polar:
 - a. Hydrogen bromide, HBr
 - b. Nitrogen gas, N₂
 - c. Hydrogen sulfide, H₂S
 - d. Ethane, C_2H_6
 - e. Tetrachloroethene, C₂Cl₄
 - f. Phosphine PH₃

VSEPR Assign

Determine the electron pair geometry and the molecular geometry for the following, then draw the 3D structure of the molecule:

Follow Octet:	Break the Octet:
CH4	XeH ₂
NF3	ArCl ₄
PH ₃	NH5
SBr ₂	FCl ₃
	OBr ₄

Intermolecular Forces Assignment

Determine whether the following molecules will have polar bonds, dipole interactions, dispersion forces, or H-bonds. Be sure to include all forces (i.e. there may be more than one that applies), If the molecule is polar, draw the dipole(s).

1. NH₃

- 2. I_2
- 3. CH₄
- 4. O₂
- 5. H₂O
- 6. HBr
- 7. HOOH
- 8. CH₃Cl
- 9. Depict a hydrogen bond between a water molecule and an ammonia molecule.

Types of Solids Assignment

Determine if the following compounds are metallic solids, ionic solids, network atomic solids, molecular solids, or amorphous solids based on their properties. These are all actual chemical compounds.

1) This material forms crumbly crystals and has a melting point of 16.6^o Celsius. It has a low density in solid form.

_____ (acetic acid)

2) This material forms very hard colorless crystals. It does not dissolve in water and burns at high temperatures.

_____ (diamond, C-C bond)

3) This material forms colorless crystals that have a melting point of 661° C. It is hard, brittle, and dissolves well in water.

(sodium iodide)	
soulon louidej	

4) This material forms silver crystals that do not dissolve in water and have a melting point of 1414° C. This material is very hard and is not a good conductor of electricity.

_____ (silicon)

5) This material is hard and melts at a temperature of 1610° C. It dissolves only with difficulty in very reactive acids and doesn't conduct electricity when molten. It forms colorless crystals.

_____ (quartz)

6) This material is soft and doesn't form crystals. It has a melting point of 660° C. It doesn't dissolve in water. It is used as a structural material in the construction of airplanes and rockets.

_____ (aluminum)

Name:_____

OPTIONAL PRIOR KNOWLEDGE PRACTICE QUESTIONS

Determining Number of Atoms

Determine the number of atoms in each of the following compounds:

1.	KCI:	9. NH₄Br:
2.	NaCI:	10. Ca ₃ (PO ₄) ₂ :
3.	CaCl ₂ :	11. AI(OH) ₃ :
4.	KNO3:	12. Hg ₂ Cl ₂ :
5.	H ₂ SO ₄ :	13. (NH ₄) ₃ PO ₄ :
6.	CaCO3:	14. As ₂ (SO ₄) ₅ :
7.	C ₂ H ₆ :	15. Zn ₃ (PO ₄) ₂ :
8.	MgCl ₂ :	

Criss Cross Method

Determine the chemical formula for the compounds created by the combination of the ions below.

	Cl	O ²⁻	PO4 ³⁻	OH-
Na⁺				
Mg ²⁺				
NH4+				
Fe ³⁺				

Determining Charges:

- 1. What is the charge of the metal in the following compounds?
- a) $CuBr_2$ c) $CoCrO_4$ e) $Ni_3(PO4)_2$ b) $FeBO_3$ d) $Cu_3(PO4)_2$ f) Ag_2HPO_4

Naming Ionic Compounds Assignment

Name the following ionic compounds using Roman Numerals where necessary:

1. BaCl ₂	7. CaC ₂ O ₄
2. CuBr)	8. Fe ₂ O ₃
3. FeO	9. Mg(NO ₂) ₂
4. MgS	10.CuSO ₄
5. Al ₂ O ₃	11.NaHCO3
6. PbSO ₃	12. NiBr ₃

Naming Covalent Compounds Assignment

Name the following compounds using the prefix method:

1. CO	6. NO
2. CO ₂	7. N ₂ O ₅
3. N ₂ O	8. P ₂ O ₅
4. SO ₃	9. SCI ₆
5. CCl ₄	10. SiO ₂

Writing Formulas from Names Assignment

Write the chemical formula for the compounds listed below:

1.	Sodium chloride	11.Ammonium phosphate
2.	Carbon tetrachloride	12.Iron (II) oxide
3.	Dihydrogen monoxide	13.Iron (III) oxide
4.	Iron (II) fluoride	14.Carbon monoxide
5.	Magnesium sulfate	15.Magnesium hydroxide
6.	Dinitrogen pentoxide	16.Copper (II) sulfate
7.	Phosphorous trichloride	17.Lead (IV) chromate
8.	Copper (I) carbonate	18.Potassium permagnate
9.	Potassium hydrogen carbonate	19.Sodium hydrogen carbonate
10.	.Sulfur trioxide	20. Aluminum sulfite

Naming Ionic and Covalent Compounds

1. CrCl ₂	14.N ₂ O ₃
2. Ba ₃ P ₂	15.BeS
3. FeCl ₃	16.MnO
4. N ₂ O ₄	17.FeSO ₄
5. CS ₂	18.AI(OH) ₃
6. Be(NO ₃) ₂	19.PCI ₅
7. AuCl ₃	20. CuC ₂ H ₃ O ₂
8. PBr ₅	
9. KMnO4	
10.OF ₂	
11.PCl ₃	
12.Zn ₃ (PO ₄) ₂	
13.NH4NO3	