- With a partner (or group of 3), using the squares you began to cut out on Thursday, organize them into four categories: Metallic bonds, Ionic bonds, Covalent Bonds (molecular) and covalent bonds (network).
- Once you have them organized by category, check with at least two other groups to see if they got the same groupings as you. If you did not get the same groupings, you need to come to an agreement on what the correct answer is.
- If you have checked with two groups and all agreed on the answers, you can confirm the groupings with the teacher.

Covalent Bonding (Network)	Covalent Bonding (Molecular)	Ionic Bonding	Metallic Bonding
Ductile and Malleable Can be drawn into wires and bend because the electrons flow freely and can act as a cushion to prevent cations from getting too close and repelling/breaking.	<u>Hard & Strong</u> All atoms are held in place by strong covalent bonds.	<u>Soft & Brittle</u> Weak intermolecular forces mean molecules are not held together tightly.	<u>Hard & Brittle</u> Bonds resist being stretched because they are held together by electrostatic force. Easily Cracked If the lattice is offset the cations can align and repel one another causing the solid to crack.
Hardness	Hardness	Hardness	Hardness
Metal & a non metal	Non-metal and a non-metal	Metal & metal	Non-metal and a non-metal
Occurs Between	Occurs Between	Occurs Between	Occurs Between

<u>Poor</u> Electrons are held in bonds so they do not flow freely.	<u>Poor when solid</u> Cannot conduct electricity when solid because electrons are held in place. <u>Good when molten/liquid</u> Can conduct electricity when molten because electrons can move around easily. <u>Good when dissolved in water</u> . H ₂ O pulls ions out of lattice allowing electrons to flow freely.	<u>Good</u> Electrons flow freely so it can easily conduct electricity.	<u>Poor</u> Electrons are held in bonds so they do not flow freely.
Electrical Conductivity	Electrical Conductivity	Electrical Conductivity	Electrical Conductivity
Atoms are bonded by covalent bonds in a continuous network extending throughout the material.	Individual molecules are held in place by weak intermolecular forces.	Crystalline, but not crystals. Spheres of equal size naturally form close packed arrangement.	Crystalline Lattice.
Structure	Structure	Structure	Structure
Insoluble Water dipoles cannot pull covalently bonded atoms out of their system.	<u>Soluble</u> Water's strong dipoles can pull atoms out of their crystalline lattice separating them, despite the strong electrostatic force holding them together.	<u>Insoluble</u> Sometimes these solids will react with water, but they do not dissolve in water.	Solubility depends on polarity of the molecule. Polar molecules will dissolve in water, non-polar molecules will not.
Solubility	Solubility	Solubility	Solubility

Variable. High melting and boiling point because all atoms are held together by strong bonds that would need to be broken in order for the substance to melt or boil. Low melting and boiling point because it does not take a lot of energy to separate the weak intermolecular forces holding the molecules in place. High melting because electron single compared to be broken in order for the substance to melt or boil. Melting/ Boiling Point. Melting/Boiling Point Melting/Boiling Point Melting/Boiling Point Electrons are completely transferred from one atom to another. Electrons are shared between atoms. "Sea" of electrons floating around positively charged cations. Electrons around attracted to or single, double Ex.	Diagram	Diagram	Diagram	Diagram
Electrons are completely transferred from one atom to another.Electrons are shared between atoms.Electrons are shared between atoms.Electrons are shared between atoms.Electrons are shared between atoms.Electrons are atoms but ma attracted to or single, double Ex.	<u>Variable.</u> Molting/ Boiling Point	<u>High</u> melting and boiling point because all atoms are held together by strong bonds that would need to be broken in order for the substance to melt or boil.	Low melting and boiling point because it does not take a lot of energy to separate the weak intermolecular forces holding the molecules in place.	<u>High</u> melting and boiling point because electrostatic forces take a lot of heat energy input to separate (they resist being pulled apart). Molting (Boiling Point
	Electrons are completely transferred from one atom to another. Ex.	Electrons are shared between atoms. Ex.	"Sea" of electrons floating around positively charged cations.	Electrons are shared between atoms but may be slightly more attracted to one atom. Can form single, double or triple bonds. Ex.